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NATIONAL ADVISORY GOMMITTEE'FOR AERONAUTICS

TECHNICAL NOTE NO. 894

‘THE EXACT SOLUTION OF SHEAR—LAG PROBLEMS IN FLAT PAﬁEﬁg T e
AND BOX BEAMS ASSUMED RIGID IN THE TRANSVERSE DIREGYTON - — - -

By Fragrcis B. Hildebrand

SUMMARY T e

A mathematical procedure is herein developed faor A )
_obtaining exact solutions of shear—lag problems in flat =~ 7~
panels and box beams: the method is based on the assump~ =
tion that the amount of stretching of the sheets in fthe .
direction perpendicular to the &irectinn of ‘gssential ot T
normal stresses is neg}igible. Explici% soldtions, in— .
cluding the Htreatment of cut;outs, are given for §everal - - -——-
cases and numerical results are’ presented in graphic and o AT
tabular form. The general theory 1a-presented in a form -~ "

from which further solutions can be ‘Yezdily obtained.

The extension "of’ the theory to. cover certain c agas of non-“
uniform croes section 'is indicated, Although the §clu— -
tions are obtained in terms of infinite series, the pres=" -
ent developments differ from those previously given in B

that, in practical cases, the series usually conveige §o -
rapidly that sufficient accuracy is afforded by a small
number of terms., Comparisons are made in several cafes
between the Dresent results and the correésponding solu—
tions obtained dy approximate procedures devised by T T
Reissner and by Kuhn and Chiarito. ) ST e g

INTRODUCT ION

The theory given in this paper is to be conBidered
as a refinement of approximate methods devised by Reissrer"
in reference 1 and by Kuhn and Chiarito in réference 2 for
the analysis of shear—lag préblems and may thus serve as a ~~
check on the agcuracy of those methods. - Such problems s
cohcern the effect of shear deformation onr the state of T
stress in thin sheets which are analyzéd in the eslementary
theory of the strength of materials without regard to shear
deformability. Examples with which this paper is conceérned
are: (1) the introduction of concentrated forces 1nto flat



2 ’ NACA Technical Note No. 894

sheets by means of stiffeners, where tHe foreces act in the
rlane of the sheet, and (2) the distribution of stress in
the cover sheets of rectangular box beams subjectsd to
bending loads: that is, in particular, the determination
of the effectlive width of suoh cover sheets,

One of the assumptions made in the above-mentioned )
theories, which is retained in the fqllowing developments,
is that stretching of the sheets in the direction perpen—
dicular to the direction of vssential normal stresses can
be neglected. This assumption, which is made plausible
by elastic energy considerstions (reference 1), is esson-
tial for the application of the mathematical methods em-
ployed in most of this paper..

No further simplifying assumption, however, is made
here and the problems considered-are then solved in an
exact manner, as boundary-value problems in the theory of
plane stress, This work is in contrast with that of
Relssner, who obtalns approxipmpate solutione in substan~-
tially simpler form of & more extensive class of problems
than the problems considered 4in the present analysis by
an application of the principle of least work, and with
that of Xuhn and Chlarito, who Pfurther simplify the prob-
lems by incorporating the resistivity of the sheets in the
direction of the-essential normal stresses into the ef-
fects of stiffeners in this direction by incereasing the
actual areas of the stiffeners by en amount representing
en estimated effective sheet width. Kuhn and Chiarito
then have to deal with sheets that are rigid in the trans-
verse direction and offer no resistance in the longitu-
dinal direction but possess finite shear rigidity.

The following investigation will include the analysis
of beams with and without cut-outs, and, in this coannsc-
tion, 1% 1ls remarked that while the way was known in which
series solutions could be obtained for certain problems
concerning beams without cut-outs, in terms of assumed
trigonometric developments -in the spanwise direction (ref-
erences 3 and 4), a new type of series development is
obtained herein which makes possible the treatment of both
types of ‘problem in an analogous way and, in addition,
possesses the advantage of being much more adaptadble to
conputation than the known type of seriess solution for the
problem of the beam .without cut-out,

This investigation, conducted at the Massachusetts
Institute of Technology, was sponsored by, and conducted
with, financial assistance from the National Advisory
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Committer for Aerronsutics. Thanks are dus to¢ Prafessor
7. Reissner of the HMassachusetts Institute of Teehnology
for valuable suggestions and ariticisms. ’ T T e
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SYMBOLS

! length of panel or team
w . one—half width of panel or beam
x spanwise distance (xl =/§-—x>
A cross—sectional area
transverse dlstance
F rxternally applied aconcentrated forece
b sheet thickness - | :
h height of hox Dbean

- — e Lo .~

I, principal moment of inertia of cross saction nf two
s1de webs, including corner flanges ) oo

a normal stress

T shear stress _*

€ normal strain

Q displacement component in x direction

v dieplacement component in y direction B

E Young's modulus (E = BEg)

v Poisson's ratio : . L _ ? s

Y shear strain f - _ _ T
G shear modulus -

H- etressg funetion - o

c constant
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H* modified stress function [H + Gv(x)]

A
od ratio of flange and sheet areas —£>

tw
Anp O
“m % ZTw
n positive integer
A auxiliary parameter
G
£ dimensionless span coordinate ( /[ — —~
n dimensionless transverse coordinata
B ratie of moments of inertia of wab and sheet about
transverse principal axis of beam (I,
I; moment of inertia of cross section of two cover sheets

about transverse principal beam axis (twh?2)

G
T8 guxiliary parameter <«/F: - l

P, uniformly distributzd load

0, maximum elementary spanwise normal stress [oy(1)]

8 angle betwaeen x—axis and normal to edge of sheet
FS o (2n — 1) Jﬁ; w]
g = 22 o 20 B X
L 2 ¢ ! ]
I total principal moment of inertia of beam section

(14 + I, + BA&gh?)
particular solutien of differantial equatisn

const nt(ﬁ)
& T

moment of applied bending leads

P
k
M
P particular solution.of differential equation
o stress function

X

I separation functions in solution of differential
equation

4 dimensisnless constant oécurring in Kuhn the-sr (with
subscript R, occurring in Eeissner theoryg -

K auxiliary parameter
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Subscripts:

edge

middle

effective _ g
spanwise . :

transverse

corresponding %o n

bending

average

H
H

oY HEeEB O

DEFINITION OF THE PROBLEMS

The first problem treated concerns the stress dis-
tribution in a flat panel of length 1 and width 3w
loaded at one end (x = 0) by concentrated axial forces
introduced into flanges of cross~sectional area Ag
attached to the longitudinal edges (y = +w and by a
concentrated axial force introduced into a longitudinal
stiffener of area A, along the axis of symmetry (y = 0).
(See fig., 1,) Suitable conditions are to be prescTibed
along the edge x = 1. TFor example, (1) the panel may
be completely clamped along this edge, (2) the flanges
and the longltudinal may be fixed at x = 1 with the
sheet subject- to displacement, or (3) the flanges may
be fixed while both the sheet and the stiffener ars not
attached to a support, It will be convenient to0o consider
separately loadings that are symmetrical and antisymmet-
rical with respect to the longitudinal axis of the panel
(fig. 1) and to obtain solutions for arbitrary loadings
by superposition,

The sacond problem deals with the stress distribu-~
tion in the cover sheets of a doubly symmsetrical box
beanm ,; supported in a prescribed manner at one end
(x = 1) and unsupported at the other end (x = 0) and sub-
Jected to a glven distributlon of bending loads applied
symmetrically at the sheet-webd jJunctions (fig. 2).
There may be flanges at the junctions of the cover .
sheets and side webs and a longitudinal stiffener along
the center line (y = 0) of the cover sheets. The pro-
cedure will be outlined for a rather general class of
end-support conditions, while explicit solutions will
be obtained for the cases when (1) the structure is
completely clamped along the edge at x = 1 (fig.
2(a)), =and (2) the side webs are fixed at =x = 1,
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A

but the cover sheets are not attached to a support (fig.
2(b)), as would be the casse at the outboard edge of a
cut-out. .

Finally, the stross distribution is determined in an
infinite half-gheet rigid 1n the direction parallel to v
its gtraight-edge and loaded by a concentrated force, in
the plane of the sheet and normal to the straight-edge, ’
introduced into a stiffener attached to the sheet in the
direction of the applied force (fig. 3(&)). While the
solution in this case 41g probadbly of slight practical
interest in itself, it was felt that it might serve asg
an indication of the limiting behavior of solutionas to
other related problems.

BASIC EQUATIONS IN THE THEORY OF PLANE STRESS FOR
AN ORTEOTROPIC MATERIAL RIGID IN ONE DIRECTION
The following eguations must be satisfled for a
state of plane stresEs in an orthotropic medium of uni-
form thickness:

(a) The equilibrium conditions for an element of the

sheet
20
= -+ é...T.. = 0 (19.)
cx vy
T 30
ek AR (1v)

(e7)
™
(oY)
D)
”NJ

(b) The gtress-strain relationships

du i,_

€x = é'-;c- = ET;(O'x - Uxoy) (2&)
av 1 )

‘y =3 E;(Gy = VyOx) (20)
dgu 9a8v _ 1 -

V=57 58" (20)

For a medium rigid in the y-direction
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B = ™
7
(3)
vge = O
and, from equation (2b), it then follows that
ov -
= 0
3 (4)
v = v(x)

If E 1is written for E,, equations (R2a) and (Zc) take

the form . I

o
E%: O’; S . (53}
G Su T — G v'(x) (51)
oy .

o . R

From equation (5) it follows by differentiation that

1 doy 13T _ " : P
ESy Tk V(R - (8)
If the equilibrium condition of equation {la) ise
satisfied by means of a stress function H, in terms of
which i
dH L
o, = 5; _ (7&)
0H . .
T = — = :
ox (7%)

"it follows from equation (5) that H must satisfy the
equation

G 32H : —— LI

az S5 = - ¢ () (8)

+

]

The solution of any plane stress problem in such an
ortheotropic medium is thus reduced to the formulation of
- boundary conditions relative to the function H and to
the solution of the differentisl equation (8) sub;ect to
those boundary conditions.

With H  determined, the stress Oy is found from
equation (3 D) as foilows? :
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acy 3T 3%y ¢ 3%
i AUl A T
oy ox dx® E dy®
o, = = ¢ oK. _ Gy v"(x) + £(x) (9)
E oy :

while from equation (5) there follows for the displace—
ment component wu,

u = i‘/1§E ax ¥_c : {10)
EJ oy ' :

An interesting relationship between u and H can
bec established by means of complex variables. If a new

variabls _
G
Xy = [ 11
xy = /% % _ (11)

is introduced, equation (8) transforms into

2 2 R
d Hﬁ N J°H - G_d v (12)
0x, % Ay =2 ‘dx,®

and equations (5) and (7) give

__«/—— au T
ay Bxl
N > (13)
3H e v -—E du
— —— I e— ——
3
X, dx, Oy B

If the function )

E* = H + & v(x) (14) -
is defined, equations (12) and (13) become

o Rk D 2 *

¢THY L OTET _ % | (15)

dx,® dy=
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*
oH - «/ﬁ du
ay axl
s (18)
N ek
dx, - dy
-

From equations (15) and (16), it may be concluded that
H* + 1 VB¢ uw = F(x, + iy) {(17)

that is, H + Gv(x) and +~EG u are the real and the
imaginary parts, respectively, of =a funcyion.of the com—

plex variable /% x + iy.

SUMMARY AND DISCUSSION OF EXPLICIT SOLUTIONS

In this section are presenied explicit. solutions of
cortain problems, the mathematical derivations of which
ars given in the two sections that follow. Solutions of
a large class of related problems can be obtained directly
from the analysis included in those sections.

Although the results with regard t6 panels are pre—
" sented in this section only for the limiting c¢asé in which
Il =, the correspending solutions for panels clamped a¥b
the end =x = 1 can be obtained in all cases by replacing

V/E‘K x - |

-/ = A, = o - .

e ¥ E ¥ by cosh /% An L “/Coshv/%.kn L in the given
w .

W
®xpressions for the stress functions.

Unless otherwise specified, the rgtio G/E is
assigned the value 3/8 in the numerical calculations of
this paper. In case the loading is 'such that the shest
becomes wrinkled, a smaller value of the shear modulus
must be taken, The nature of the solutions for large val—
ues of the span—width ratio is such, however, that a
change ln the value of G merely involves magnification ~

of the = scale in the ratio
W Gors

, together with a
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multiplication of the shesar stress values by the reclipro—
cal ratio. '

Stresses in a Long Symmetrically Loaded Flanged Panel
without Central Btiffener
[Panel 1]

4 long panel of width 2w is clamped along one end
(x = ») and is loaded at the end x = 0 by axial forcos
F acting on flanges of oqual cross—sectional area 4
attached to the edges (y = = w) of—the sheet (fig. 4(a)).
TYhe stress function is Getermined in tihe Torm

F } f P 'F Mn >
' 1 y ' cos-Ap sin Apy- v E "y
= o L e — + i . . X
H L La + 1 w 2 4o Ap(1l + o cog? kn) © J (18)
=1 R . . - K

where « represents the ratio of the flange and sheet aroca®s
ant is given as

A

CL:'—t_; (19)
and the parameters A, are the ;positive solutions of the
equation )

tan Ap + o Ay = O (20)

the first 15 of which are listed for «.= 1 and o = 5
in table 1. The eoxpressions for ithe spanwise normal

OF . . PR )4 g c
stress oO. = <~ ahd the shear stress 7 = — — follow ..
- al ' Ax v
in the form ! — .
co o __‘/G' A\ el ,
7 1 U cos Ay cos Ap % /B "n
T = e e g o f : —— e _ (?,l)__
A L“ + 1 =1 1 + o cos®hy
; G x
. x . ¥ — /= hyq —
— S? cos hp sin A, = E "D oy
T = ?, :-:‘- s -
ot

v - : (22)
Vi f=1 1+ « cos® A, _— :
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In the case of an unflanged panel, for which o =, 0,
the series become Fourier series and can be summed in
closed form, gilving
2F —1
H=— tan - tanh~é tan 2\\ (23)
Tt 2 2/
. = ¥ sinh ¢
x tw coshf + cos 7
. r ZG gin n " )
T twAE cosh £ + cos n ) .
where . L
= fG mx )
oy S
and o —
k1 -

The flange normal and shear stresses, as well as the
normal stresses along the center line of the panel, for T
the cases o =1 and o« = 5, are plotted in flgure 5(a)
while the normal stress distributions along an edge and T
along the center line for an unflanged panel (o = 0) are )
given in figure 5(b). (See table 2,) It is seen that for
@ = 1 +the shear—~lag function qx(x,w) — o4x(x,0) becones
negligible at a distance from the end section équal to
about 2% times the width of the pansl (x = 5w), while if
o = B apgre01able shear lag is present up to a distance
of about 3 times the width of the panel., If no fTlanges o T E
are present, the normal stress becomes infinite at the -
point of load appllcatlon, at a distancé 6f about 1k times
the width of the panel, however, the spanwise normal stress
becomes practically corstant over the cross section._

Stresses in a Long Antisymmetrically Loaded Flanged Panel
without Central St iffeners - T
[Panel 2 ]

If equal and opposite forces +F are acting on the
flanges of a symmetrical panel (fig. 4(b)), the stresses
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are determined from the stress functiont?
i .

F 3 3 1 T
H= —¢ oo Ly L= . .
t] 2(3a + 1) [ \w/ 3 ] :

L .
' sin A

ol sin P\nGos Kn_%f-—-———-—-> ﬁ X
) - - 2
P

' L in A\B
n=1 xn!} + o sin® A, /E—E——E\ ]

X, J

(24)

-2

where again o = ;— and the parameters A, satisfy the
w : .
eguation ' ’
An
tan Ay = —————— (25)

a A+ 1
The first 15 of these parameters ‘are listed for a = O,
a =1, and o = 5 1in table 3.

The expression for the spanwise normal and shear
stresses in the panel follow from equation (24) by dif=

ferentiation, _
. i v
sin A, sin A, = _ﬁ =
s ) ® n § ny g May
o = E Tz ) — e 7 (26)
X tw 2a+1 w £

gin A, \3
n=3 144 sina?nn- ( E—)
A

If no flanges are present, the expression for the
stress .function reduces to

J /G X
- o C. —_ - A - JZ A =
] . [g y\ - . ® cos Ay ” cos A, . F MW (28)
- --\—. ——— —y o
1en w/ L Ay sin Ay

iThe irrelevant sdded constants present in equation (24)
and in the expressions for certain of the other stress
fiunctions in the following problems are due to the conven—
tion theat H(o,o0) = 0. '
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where L
tan Ap = Mg ’ ~(29)

The flange normal stress, as well as the shear stress
at the flange and along the center line, is ploitted for

a =1 and o =5 in figure o(a), while for an unflanged
panel the normal stress along the edge and the shear stress
at the center line are shown in figure 6(b). (See table 4.)

It is seen that in all cases the normal stresses closely
approach their limiting values at a distance from the end
which is less than the width of the panel, .

Stresses in a Long Flanged Panel without Central Stiffener

Subjected to Asymmetrical Concentrated Loadings

If unequal loads are acting on the flanges of a sym—
metrical panel, the corresponding stress functicn can be
obtained by superimposing proper multiples of the symmet—
rical and antisymmetricel stress functions (18) and (24).

For example, if, as in panel 3, a force F is act—
ing upon the.flange along the edge y = w, the other
flange being unloaded (fig, 4(c)), the relevant sitress
function ie given by one—half the sum of the functions
(18) and (24). The corresponding stress distribution is
indicated for o =1 in figure 7.

Coen . -

Stesses in a Long Symmetrical Flanged Panel with
Central Stiffener
[ Panels 4 and 5]

If arbitrary concentrated, loads are introduced into
the two flanges and into the central stiffener of a long
symmetrical panel, the loading may be considered as the
superposition of two loadings? (1) equal loads Fg act—
ing on the two flanges and a load ¥, ‘acting on the stiff—
ener, and (2) equal and opp031te loads £F intreduced into

the flanges, no load acting on the stiffener. In the sec—

ond case (fig. 4(e)), the stiffener is ineffective and the’
stress distribution is obtained from squations (24) tao
(27).. That the stiffener is ineffective fellows from the
convention that the stiffener 'is concentrated along a
line. If the width of the stiffener is small in compari-—
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son with the width of the panel, the efifects actually
present would in any case be negligible.

In the case of a symmetrical loading (fig. 4(4)) con—
sideration of the shearing action along the two edges.of
the central stiffener indicates that the shear stress is
discontinuous at the stiffener., As a result, it is found
that the stress function has different analytical expres—
sions -in the two sections of-the panel. Because of the
symmetry, however, it is sufficient to determine the state
of stress in one—half the panel., 1In the positive half of
the panel (o < y < w) the stress function is obtained in

the form
H = L ﬁ(l-a_1\+ﬁ‘e<%+am)
t(o:,+oc,m+l) 2 w /

o)

. : -z A X
N s 1 y v\ TVE Pa
—_ K., Y - gin A, = 4+ a, CO8 Ay — '€ (30)
n=1 non \kn now " Sy
where the. constants are defined as
Ao
¥
(31)
.
" 2tw
- W _ -1
= , il y .. : pg ° A[
Y., = L \-K; sin Ap = + ay co08 Ap — dy (32)
o .
Y A
Kn=-/¥{"21 woe= 1
0
; (7 AN y v\

+ Fg (—;+a,m/}1-i—;s1n7\n;+?mcos?\n_;j dy (33)
and the parametsrs A, are the positive solutions of the
equation ' ST S ©

- tan Ay
o ap Ap tan Ay - —x= T a t oy (34)

n
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Phe stresses Oy and T follow from equation (30)
by differentiation in accordance with equation (7).
Although the expression in equation (30) is somewhat com—
Plicated, it is found that, except in the immediate neigh—
borhood of the end x = O whele the stresses are already

known, the presence of the exponential facto¥ in the series’

brings about such rapid convergence in practical cases
that very few terms of the series are needed for ‘ordinary
accuracy. In g later section the stress distribution
associated with equation (30) is evaluated numerically for
the case of an actual test panel (panel 10) considered pre-—
viously in reference 3. -

Panels 6 %0 9 represent z special case in which

Ay, = 2 Ags. If the area of the central étifienef is just
twice the area Qf esach flange, the expressions involved in
the solution are considerably simplified., In this case =
general symmetrical loading can be treated by superimpos—
ing two basic loadings: (1) egqual loads T aéting on the
flanges and & load 2F acting on the stiffener (panel 6},
and (2) equal loads F acting on the flanges and a load
"—2F acting on the stiffener (panel 7). Lgain, because of
symmetry, it is sufficient in ‘sach case to con51der the
positive half of the panel.

For panel 6 (fig. 4(f)), each half of the pansel behaves

in the same way as panel 1, The stress functlon is obtéine&

by replacing w by % and F Dby (2 v i\ in the ex—

pression for the stress functlon for the complete panel-
so that, for o<y < w, '

‘;\g—'cosk sin A Bz—\ —ﬁ——
(2L -

w
E=% {3t S+ 22, 3 (35)
atl\ ¥ a=1y, (1 +2a cos® Ap)
& D x 7
T 5 . €08 Ap cos Kn(?——-?/ zy/g-Kn o L
Oy =g gmtd _ ! (36)
= twj 2ol T p=y 1 + 2a cos® A, J
and e, e N e oz
@ F ) cos Ap sin kn&? EA 1 “2/F MW
tw n=1 1 + 2a :6032 Kn
A ' ' i .
wheére o = ?E and the constants A, are now the positive
W .

solutions of the equation
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tan Ay, + 2a Ay = O (38)

The stress function corresponding to panel 7 (fig.
¥ .
4(g)) is obtained by using Fg = - 2?—= F and Ap = 2 Ag
in equation (30). After some simplification there follows,
for o <y < w, '

- I T“ -g8in An ?os K +'— l) _zv/_-kn _]
B=:<1=2 7/~ (39)
L 1=y Ap(1l + 2a sin® hn)
7 :q sin-Ap sin Ap (? Pl L =2, % An w
Oy = & — 7, _ £ o : (£0)
tw n=1 1 +Ra sin® Ay
and o ' ’ N
sin A, cos A 2 L 1) 2 /&,
G ¥ n n w Vi z ‘oW
T =-4 -ﬁ‘{j— : e (41)
¥ n=1 1 + 2 sin® Ao
whsare . - fg
tw !
and '
cot Ay — 2 Ay = O (42)
The first 15 of the solutions of egquation (42), for _
1 .
% =3 and o = 5. are given in table 5,

The spanwise normal stresses and the sh?;r stresecs

at a flange and at a quarter section vy = %

for panel 6 in figure 8(a) and in tabdblo 6, - for a = %
and a = g, wvhile in figure 8(b) and in table 7 are pre—
sonted curves representing the flange normal and shear
stresseos for panel 7. It7is to be :remarked that thm
stress o, 1is symmetrical about the center line (y = 0)
in both cascs, symmetrical about the quartoer scction

[y = W

5 for panel 6 and antlsymmetrlcal about that line

are pleotted

}or panel 7,

By combining suitable multiplés of the stress func—
tions given in equations (24), (38), and (39), solutions
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may bge obtained for an arbitrary set of three concentrated
loads introduced into the flanges and the stiffener for
the case in which Ap = 2 Ag., In particular, if equal
loads ¥ are acting on the flanges, while no load acts

on the stiffener (panel 8, fig. 4(h5), the relevant &tress
function is given by one—half the sum of the functions
given in equations (36) and (39). The normal stresses in
a flange, in the stiffener, and at a quarter section, and
the flange and stiffener shear stresses are presented,

for o = % and o = %} in figures 9(a) and 9(v), respec—

tively, and in table 8, If a load 2F 1is acting on the
stiffener, while no loads are introduced into the flanges
(fig., 4(1i)) the stress function is given by one—half the
difference between the functions of equations (36) and
(39). In the present case, however, it is seen that the ~ =~
expressions for the flange and stiffener stresses, respec—
tively, in panel 9, are obtained by interchanging the cor—
responding expressions for panel8. ) C—
For the purpose of comparlscon there are included 1n :
figure 10 curves representing the normal stresses along T
the longitudinal edges of unflanged panels subjected to
(1) equal concentrated axial forces F acting at the cor—
ners of the free esdge and a force 2F acting at the cen—
ter of that edge, (2) equal forces F acting at the cor—
ners and a force —2F at the center, and (3) equal and ' —
opposite forces +F acting at the corners. (See table 92,)

Panels 6 and 7 cen be considered sections of a semi—
infinite sheet stiffened by a series of equally spaced
longitudinals of area 24g and constant separation w.
where, for panel 6, egqual axial loads 2F are acting on
successive stiffeners, while, for panel 7, sgccassive
loadings are of magnitude 2F Ddut are alternately com—
pressive and tensile, By supeérposition the stress dis—
tribution is obtained for an arbitrary pair of conceéen— '~
trated loads repeated periodically along the edge of the
gheet. For example, the stresses given for panel 8 (or
panel 9) can be interpreted as the stresses in a section ~—
of a sheet of this type whers alternate stiffeners are
not loaded, Similar statements apply to the curves pre-—
sented in figure 10, ;



18 . NACA Technical Note No. 894

Stresses in a Doubly Symmetrical Rectangular Box Beam
Clamped at—One End and Subjected to Concentrated
Bending Loads Applied at the Free End
The rectangular box beam shown in flgure 2(a) is sub—
Jected to cancéntrated bending loads applled at the free
end., I% 1s here supposed that noflongitudinal_center
stiffoenser is present, although the analysis of a later

section include& alsoc the theory in the more general case.

The stress function is deteimined in the form

y gkcos Ap sin Ap, % sinh pg z
H= woo{— —+2(B+l)/ - . Lo (43)
Ln—1X (1+ B GOS An) cosh By

where o, is the maximum elementary spanwise normal
stress,

ho_ F :
T T 3T (44)

B 1s a dimensionless parameter representing the ratio
of the moments of inertia of the wéeb and the sheet about
the transverse principal axis of the beam and is given as

I

W ”

B=—f-'- T{t{_‘ (45) ‘

s AL, . B
the parameters ln are the positife solutions of the . -
equation 4 '

tan Ay, + B Ay =0 (46)

which is of the same form as equation (20), and Bn ig
defined by the rclationship : .

A

%
% |

Bn = A Do N Y

The stresses o, "and T follow from eguation (43)
by differentiation '
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i _ w_21cos Ap cos Ay % sinh p, %
Ox = Ogi=+ 2(B+1) /= =\ ' (48)
v G 1 7 ap(1 + B cos®g) cosh iy
n=1 -
I & cos An sin A, % cosh ppn %
T=~0, $4L+ 2(g+1) L (49)

n=1 Apn(1+p cos2® Ap)

i It 1s seen that the series parts of equatlons (48) and
Y (49) are of the nature of corrections to the linear
' stresses predicted by the elementary theory. For span—

width ratios in the practical range the parameters p,
are of such a magnitude that, except in the immediate
neighborhood of the fixed end (x 5 1), sufficient accu—
racy is obtained by retaining only a small number of the
termes in the series,

An alternative expansion for the stress function can
- be obtainced by conventional methods, which are somewhat

simpler than those employed here, in the form )
6w 1 = (1) sinh 6, T (2-1)m % /on
H:.—‘;T.c‘o ) - — - . — Sin nz. 14 —? (50)
T = (2n—1)° sinh 8, +B &8, cosh 8y ot
where o
5 _ (zn — i)nv/ﬁ w7 -
. no- 2 - G .
1 > (51)
7 ,B —_ _i___
s
‘ J
from which there is obtained
[e=]
N y
ot Lffxg LT SR RN (e x (g
7w Ted® T "0 g=1 2n— 1 sinh8p + B 6ncosh &, 5 1
. 5 -
. 4 I v %(—-1) sinh 8n 3 (2n—1)nr x
== = = : — cos ———1" 2 (53)
m Ig 1 Sy 2n —1 sinh 8,+f 8n Gosh §, - 2 1

- This form of the soclution has the disadvantage thgﬁlﬁhe

i
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serios, instead of being of the naturs of end corrections,
serve to determine completely the siresses, Moreover,

the convergonce is least rapid in the neighborhood of-the
flanges (y = +w) where the magnitﬁde of the stresses 1is
génerally of greatest interest. Finally, the procedure .
leading to equation (50) cannot be directly employed in

dealing with beams -with cut—outs while, as will be shown,

the present methods apply without modification,

The normal stresses in the flanges and along the
coenter line of the sheot for a beam with length—width

ratio gL = 2.5 are shown as the s0lid curves in figure

W

11(a) for B = 1 and in figure 11(b) for the limiting
case § = 0. (See table 10.) The solutions obtained dy
Reissner gnd dy Kuhn gnd Chiarito for the former case will
later be compared with the present results,

The transverse distribution of normal stress aft the
rootls presented for B =1 and B = 0 1in figure 12
and in table 11, The parabolic distribtution predicted by -
Reissnerle solution far the case B =1 1is shown as & *
broken—line curve, The fact that the stresses in the
flangos and in the central fibers of—-the beam, as pre—
dicted by the Reissner solution and by the present solu—
tion, agree almost exactly along the entire span except
for small deviations at the root, as is shown in a later
scction, indicates that the parabolic approximation is
extremely accurato except in the immediate vicinity of the
root., In the limiting case B = O thooretically infinite
stressos are predicted at the root corners.

The so—called effective width of the cover sheets,
defined by the relationship

W

Wors Ox(X,u) = [axu,y)dy (54)

can be expressed as foéllows in bterms of the flgnge stress
and the elementary linsar stress

oy = }
w o o7
off _ .
——== =1 - (B + 1)1 - E;TETF7J (55)

The solid curves of figure 13 represent—the ratio of the
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effective width to the actual width of the cover sheet as
a function of distance from the free end for B =1 and

B = 0. (See table 12,) PFor B = 1, the effective root
width is found to be 78.6 percent of the actual width as
compared .with the value of 80.1 percent obtained by
Reissner. In the limiting case B = 0, the sheet is over
than one—~fourth the width of the shest, but the effective
width rapidly decreases to zero as the root 1s approached.

Effect of a Cut—Out on the Stress Distribution
in a Rectangular Box Beanm'

Subjectnd to Concentrated Free—End Bending Loads
If o section of the cover sheet is removed at x = 1}
(fig. 2(1b)) and no sheet stiffener is present, the stress
distribution in that part of the sheet between the free
end and the cut—out is derived from the stress function

o Ap 8in Ap - 8 x
7 Xy S" cos Ap sin An = Blnh.pn 3
H=w o 3— = + 2(p+1) —— % (56)
°l1 w

- ) .
n=1 Ap(1+B cés ln) sinh Bn

where the constants are defined as in equation (43). It
follows that '

cos kn cos ln

ld

x
sinh p, I

x = GQ

IV"B

§+ 2(g+1) {(57)

a=1 1 + B ¢oe® A,  sinh p,

x
31 cos Ap sin Ap % cosh puy —

L —— S (58)

B w n=1 1.+ B cos™ A sinh p,

| &
[

+ 2(B+1)

g <

W
T = —CTq —
7

The spanwise normal stress distributions in a flange
and along the central line of the sheet for the span—width

- | . .
ratio oo = 2.5 are shown as broken—line curves in fig—
p” : et

ure 11 for B = 1 and B = 0, while the variation of the
effective width along the span as computed from egquation
(85) is presented for § =1 and B = 0 in figure 13,
(Ses tables 12 and 13.) A discussion of the Tesiltse is
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’

postponed until a later section in which a comparison 1is
made with the solution given by the procedure of refersence 2,

Streas Distribution in a Semi—Infinite Sheet with One Stiffener

If 2 load F is introduced through a stiffener of .
cross section A info the straiglt—edge of an infinite
hglf-~gheet asgumed rigid in the direction parallel to the
straight-=edge (fig. 3(a)), the.stress distribution is deriv—-
able from the stress funciion .

¥ —-y p sin k x D

ZFf ;

A . 2% ) :
o PP+ A /'

where

(60)

W
]
T

¢o that, in particular, the expressions for the normal
stress in the direction of the stiffener and for the shear
stress tale the form ’

27 Y =Y D sin 'k
n 'k x
c._ = — e pEErRE d p (61)
= 1 7- L, 2%
) P
ST —¥ P cos k P X _ _
T = : :
= e — 5 anp (82)
° P+ ox
Along the stiffener (y = 0) these @xpressions can be writ-—
ten in terms of tabulated functions as
27 | ktx|m 2ktx 2kbx . 2kix)|
E sy I —_ i +
o (x,0) =% 908 T Lz 51~ ] sin i Ci — ; {63)
. 2KF 2ktx 2ktx ] 2kt x 2ktx)
T(x = — = — Si A4 = . i
r(z,0) ﬂﬁ-iﬁ 2 —— 13 Si 5 ] coss—r Ci Y {64)

witih the conventional abbreviations
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/z sin u du ]

Si.x = ”
. . N - Q % N (65)
o0 .
i x = jr cos uw du
X J
In %he limiting case A = 0, when the sheet is un—
stiffened, o
F —¥P gin k x P ¥ -1 kx
H = — — —-—— dp = — — %tan — 66
127 o ° ' jo! P ot . ¥ ( )
, B
F kx
o =
p ot yz + k?.-xa
4 (67)
- kF y_
T e
mt y2 + ksz/

and, in particular, the normal stress in %he dirsection of
the applied load is given by

F
. cx(x,o) = nfki

(68)

The corresponding stresses in an unstiffened 1sotrop1c
sheet are known Lo be of the form

~
2Fx°
Ox = : z
mt(x® + yzy

‘ 2Fx"y . .

T = y ? (69)
nt(x® + y=)® :
2F <

o ! B e—te— ..
S x(x,o) ntx :
-

It seems of soms interest to compare the stress dis—

tributions just obtained with that associated with a load

uniformly distributed over a small area at the margin of
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tho shoot, " In particular, if the load F is uniformly
distributod over an area t2 (fiz, 3(b)), tho stress
function takes the form v : -

—i sin pt '
- [ TER IR (70)
J p2

and tho normal stross along the llne of symnotry follows
by differontiation,
_ OE(zx,0) _ F - 75\

— tan *_\/ ) (71)

o.(x,0) 5 —

Thu corresponding stress for an lsotroplc material is
givon by the oxpression

o lx,0) = = {tan " L 4+ —— (72)
it E X 1 +1 X R
AN
In figureld the stiffener shear and normal strosses
are roprcsentod in their dependeonde upon tho ratios

G F ' S . :
v/%-fg and I’ while in figure 15 the flange normal
siresses corrcsponding to eguatioms (71); (72), and (63)
are compared., (Sce tables 14 and 15.

HATHEMATICAL FORMULATION OF THEE BOUNDARY-VALUE PROBLEHS

Strosses in Axially Loadecd Symmetrical Penols

Symiotrical loading.,— The nobtations and dimonsions
assumed in this soction are indicated in figuro 1(a).

Bocausc of tho symmetry tho transversc displacoment
must venish along the l1ino y = 0 and hence, from equa—
tion (4), must vanish everywherc.’' Thus tho differontial
oguation (8) for the stress function K takos tho form

2 2 1 :
d~H + G O°H =0 _ (73)

$x® © E 3y?

At the frooc ond (x = 0) the spanwiso.normal strose
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T

o, = Oy' must vanish oxcopt ab g = 0 and at ﬁ = tw

gl

and is finite at those points, so that H{(o,y) must be
constant. ©Sinco, according to squation (7), the stressos

romain unchanged if H is increased Dby a constant, it is

permissible o require that
H(o,y) = O (74)

Because of continuity of tho spanwise strain €

it follows that the spanwisec stress oy, = %% is continu—

x

ous at y = O and tho condition of equilibrium between
tho sheet and stiffencor along the line y = O can be
writter in the form

Ap acxéi,O) = =% [T(x,ofa —"r(x,o—)] (75)

If equation (75) is written in terms of the strees func—

tiom H and if the fact that T is an odd funciion of
¥ 1is used, this condition becomes '

‘j
\b ]H(::,o-% _ Am é_H_S_I_’_C’_).:l= o
0% L 2t 9Oy _
- s (76)
A, OH(x,o0)
H(z,0t) — — — 2" = constant
2t oy
J
It now follows from the end conditiaon
) - 0H{ o+
v .

and from squation (74) that tho constant in equation (76)

F

has the value of ~ E%’ and thc condition along the pos—

itive side of the line y = o takes the form

OH(x,0) = —F (78)

2tH(x,0+) — Ay 55 n
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Since H ana oK aro odd functions of y, 1t is scen

, T O0X
that thoy are discontinuous at the line y = 0 {except
at x = Q) .unlos Ap = Fp = 0. Also, from oquations
(74) - and (78), it follows that
-
y~> 0 ay . L
(79)
1im -BH(x,o).= EE

The condition along the line y = w can be obtained
from the spanwise condition of equilibrium

v
-
2% j O, &y + 2 Ay ox(x,w) + 4 ox(x,0) = 2Fe+ ¥y (80)
o . .
If oy = — is introduced intoleéuaﬁion (80)_and if

oy

oquation (78) is taken into account this condition
reducos to :

SE(xyw)
t H(x,w) + Ag ——%;i—— = ¥, (81)
At the end x = | a condition of the form
QE( 1,¥y)
ao H(1,y) + a3 ——%;—Xl = £(y)
(82)
¥y = 0 :

is assuncd, Among the situations:in which equation (82)
applies, thoe following cascs may be notod:

l. If the end = = 1 is clamped so that the span—
wise displacement wu vanishos, 1t follows from ecquation
(5b) that :

dH( 1,¥y) _ i
3o 0 _ (82a)

2. If a section of tho pancl, including the central
gstiffener, is romoved at =x = 1, it follows that
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o, (l,y) = 0 if y # &w so that “H(l,y) = constant.

o : _ - ) ¥
Bquation (78) then requires that H(l,0) = - —B and the

2t
condition at x = | Tbecones
~ F
m
H?I, E e
(1,y) 5% ) |
(82v)
y > 0

It should be noticed that, since H 1is an odd function
of ¥ .

H(l,y) = —B_
y <0
so that H(l,yy is discontinuous at ¥y = 0 wunless F, = 0.
If Fp = 0, it follows from symmetry that the panel can
be considered as clamped along the line x = %, so that
this case is then reduced to case (1). )
3, If a section of the sheet is removed at x = 1

:ztttne central stiffener is built in, it again follows.
a

H(L,Y) = C
(82¢)
vy >0

Although constant ¢ cannot in this case be determined

from static considerations, if. the stress function is
determined in terms of ¢, the additional condition

U(I,W) = u_(l,O)

which becomes, from eguabtion (58},
w' .. ‘ ' .
L' Lo -
fgg( ORI
o ox :

is sufficient for the determination of the constant.
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4, If the emd x = ! 1is subjected to an axial load-
ing distribution ¢t g(y) which. is statically equivalent
to the loading at~the end =x = 0, 8o that

o (1,y) = LT L g
oy

it follows from equation (78) that

y
A F 3
1 = - - B - ilm
H(l,y) é g(u)du = = g(o) o

" (e24d)

4

If the preceding results are summarized, the stress
function H. is completely determined in the region
[o<x< !, o<y<w and hence, by symmetry, over the
entire panel, by the following get of wguations: N

55 , G d°H | e

4 = = Q Al

ax*= E dy°® (a1)

H(o,y)}) = 0 " (42)
SH (1,

aoH(l,y) + a; 3—5 v) _ £(yi (43)
UX

2tH(x,0+) — Ag §§§§¢31 = - F (44)

tH(x,w) + Ay gggx’W)'= Fe (45)

y

Antisymmetrical loading,— The notations and dimen—

siong assured in this sectien are indicated in figure 1{b).

Since the transverse displacement v does not van-—
ish in this case, the stress Ffunétion is governed by the
more general differential equation (8) which can be writ—
ten in the form

d ( 3%H _ & 3%EN

2 2= = 8
Ay \_ ox= B Jdy* /" ( 3}




NACA Technical Note No. 894 29

The conditions along the lines x = o, x = !, and
y = w are identical with those in the preceding section’ -
and are given in equations (74), (8lL), and (82). Since
ox(x,0) = 0 from symmetry, equation (78) is replaced by
the condition . . -
égéiiﬂl = 0 (84)
oy i

Ln additional condition .is obtained from $he eaug—
tion of moment equilibrium which can be ertten in the
form

w . i
t /ﬁy Oy dy + w h oy(x,w) = w F (85)
o
cH
If o, = —~ 1is introduced into equation (85) ard the first
oy <
term is integrated by parts, : - L
W
t H(x,w) — % ./\H dy + A ggﬁziﬂl = F (86)
¥y - o
o . i

and equations (81) and (86) are compatible only if H
satisfies the additional restriction )

w
j H(z,y) dy = O o (87)
o]

The following set of equations then determines the =
stress function H in the region [0 <x <!, o <y <w]:

a.' 32H G aaﬂ v o
9. (8= = Q . - (BL)
dy sz E byz / ' o
H(O:Y) = 0 . : CBB) -
oH(1,
ag H(l,y) + as —i‘ﬁg—s-’—)- - £(y) (23)
' X
QE(x,0) _ ¢ (54)

oy
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t Hx,w) ; A éﬁﬁf;ﬂl = F (B5)
. oy
r\_.'vl
/ E(x,y)dy = O (B6)

Stresses in the Cover Sheets of Doudbly Symmetrical Box Beams

The notations and dimensions assumed in this section
are indicated in figure 2.

If it is assumed that the bending loads are applied
srumetrically about the line ¥y = 0, it follows as before
that the transverse displacement '¥ vanishes idontically
and the stress function is determined by the differential
equation (73).

The conditions along the lines x =0 and x = 1
are identical with those derived in the preceding sections:
namely,

#(o,y) = O (74)
ao H(L,¥) + ay SELT) gy (82)
oX

where equation (82) includes, in particular, the case when
the beam is completely clamped at . x = I [ao = 0, £f(y) = 0]
and the case when the silde structure is fixed but the

gsheet and longitudinal are not attached to the support

[a, = 0, £(y) = 0].

Llong the positive side of the lineg y = O, +the dis—
cussion of the preceding section again leads to equation
(76). In the present case, however, the normal stress

Oy = %g vanishes at x = O for all ¥y, and it follows

from equation (74) that the constant—of integration in
equation (76) must vanish, giving the condition

dH(x,9)

> 0 (88)

2% H(x,o#) - An
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 The squation of moment equilibrium about the trans—
verse principal beam axis can be written

LI N . =

w

2th /‘a dy + v S oelx,w) + h Ay cx(x o) = M(z) (89) _
: h/2 - T

where M(x) 1is the moment of the applied bending loads. .
If equation (89) is expressed in terms of H and if : -
equation (88) is taken into account, the boundary condi-—

tion along the line ¥y = w follows in the form

Is m(x,w) + 1, QBGW) | oy B (90)
LA oy 2

In summarizing these results, it may be seen that
the stress function H is determined in the region
[oc x< l, o< y< w] by the follow1ng set of equa— ——
tions: ) R : o~

85, 6B _ 4, 7 . (61) o

ox® B 3y S

H(o,y) = 0 ~ | (02)

aoH(l,y) + ay ZELLT) - p(y) (©3)

S ox . S
2t H(x,o+ H(xz,0) _ . (Ca) _
3y _ L L
. |

28 m(x,w) + 1, BBLW) () B (05)

w oy 2 -

SOLUTION OF THE PROBLEMS -

One of the difficulties encountered in solving the
sets of equations derived in the preceding section arises
from the nonhomogenselty of the conditlons at both the
boundaries x = consiant ard " ¥ constant. In most cases,
however, the problems considered can be reduced to prob-
leng of g more convontional type Py the definition

H=0® + P (91)

where P is a particular solution of the governing differ—
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antial equation (73).or (83), determined sc as to satisfy
either the end conditions along the boundaries =x = con-—
stant or_the equilibrium conditions prescribed along the
boundaries y = constant, so that the corresponding con—
ditions become homogeneous in ®. In case both procedures
are possible it is preferable to satisfy the equilibrium
conditions for two reasons: (1) The function P so .

. determined is then s stress functilion corresponding %o the
state of stress in a sheet subjected to extermal forces
that are statically equivalent to the actual forces and,
according to Saiant Venant's principle, if the length—width
ratio of the sheset is sufficiently large, the two stress
distributions will be nearly identical except 1n the
regions near the ends of-the sheet7 " Thus the function ¢,
which must be expressed, in general, as an infinite gseries,
ig of the nature of an end correctian. If, however, the
particular solution P satisfies only the cnd conditions
along the .sections =x = Tonstant, the infinite series
representing ¢® will be in general significant over the
entire span. (2) Certain computationral advantages follow
from the fact that if--P 1s made to satisfy the equilibrium
conditions the variation of--® in the spanwise direction
is expressed in terms of exponential (or hyperbolic) func—
tions, while in the alternate procedure the reverse is
true. If the condition of support at =x = 1 is such that
f(y) 0 in equation (82), as is true in many pragtical
cases, the first procedurce 1s applicable with P = 0. Cer-
tain special cases of-the problems considered here have
been solved by this last method (references 3 and 4), but
the solutions obtained in this way are not 50 well adapbted
to numerical computation as those obtawined here.

In the rest of this section the boundary value prob-—
lems formulated in the preceding 8ection are reduced to
gsets of ordinary differential equations with "terminsl con-
ditions, all of which can be solved by elementary methods.

The Symmetrically Loaded Panel
A solution of egquation (A) is assumed in the-form
H=2 X,(x) ¥, (y) +p@) l (914)
n
Now the differential equation (Al) requires that X,, Y,

and p satisfy the ordinary differential equations

p"(y) = 0 - (92)
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a3
%n" (x) _<EI}1> X, (x) = 0 (93)
o) + (223" 1 ) = o (s4)

where XAy and W, are ardbitrary constants satisfying the

relabtion
G
.y
o E

The boundary conditions of equations (42) to (A5) taﬁe the

Ay (g5)

£ |

form _ . A
% %n (0) Yo (y) = —p(y) | (96a)

z jao Xp (1) + a, Xn'(l{r Y, (y) = £(y) - 2o ?(y) (g6D)

PN 12t Y (o) — p o (o)? Xn(x) = —tzt p(o)—nAmp'(o)+-Fm} {(96¢c)

oo J

~

36 Tp(w)+ A, Tpt(w)d Xy (w)
J

=] gl

]

- .

" The equilibrium conditions equations (960) and (96&)
are satisfied and homogeneous conditions. of the the

required’ are obtained if it is required that o T

8t p(o) — & '{o0) =~ F
p\O m P .(0 m (97)
% p(w) + &, p'(w) = F
and . -
2t Tp(0) — Ay Yn'(o) = 0 ) seT

I

bad
°J
Bquatiors (92) and (97) are sufficient to determine the
particular solution .p{y), while the differential equa-—
tion (94) and the homogeneous boundary conditiong (98)
constitute a "characteristic value" problem of the Sturm— ~
Liouville type over the interval O0< y < w. The constants
N, are determined as a discrete infinite set of charac— °
teristic numbers; and, corresponding to sach such _K

t Y, (w) + A Y, ! (w)

—ﬂ: P(r)+ag () =7,] (s6a)
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a characteristic function Y, satisfying the conditions
of the problem is determined. It is a property of such
systems that the set of characteristic functions so ob—
tained ig orthogonal over the interval involved and that
any function having a contlnuous second derivative in
that interval has a unigue esxpansion in a series of those
functions. Purthermore, if the permissible condition of

normalization
'

JF T,% dy = 1 ' (99)
o : :
is imposed, the constants in the expansion

F(y) = % cpn Yu(y)
(100)
0K 7y < w

arag determined by the formula

Cp = JFWF(u) Y, (u) du R (r101)

o

With p(y) doctermined and the relationships neces—
sary fo; the determination of the orthonormal seb
LYn(y)}- known, it remains to determine - X, (x) so that
eqﬁations (96a) and (96b) are satisfied. If 1%t is assumed
that f£(y) has a continuous second derivative in (o,w);
it follows from equations (96a) and (96b) that, according
to equation (101) X,(x) must satisfy the conditions

w

X, (0) = -jf plu) ¥, (u) du (102)
~o

w

ag X, (1) + ay X, 0 (1) = J[~£f(u) - aq p(u%} Y (uw)au (103)
o

-

and equations (102) and (103), together with equations
(95) and (93), arc sufficient %o determine Xn(x).

The solution of the boundary value problem of equa—
tion (4) in the region [0 <x <!, 0 <¥y <w] is given,
as & summary,by .

H= 2 X(x) Ypaly) + p(y)

where
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p% = 0

26 (o) ~ & p'(0) = Ty | L.
F

. g oolw) + &g pP(w) = F, |
<
Tt ¥ -w-> tn = 0 : -

]
o

2t Y, (0) —Ay ¥, ' (o)

§ Tnp(w) + Ay Tot(w)

w
fYna dy = 1
. 3 |
= _
¢ A\
[ _I_l_ - .
L' -z ) % =0 :
Xy (o) =" = /¥P Ty, dr >
R 'o
. w
]
(8] A

Explicit solutions in several cases are presented in
a preceding section. The determination of H is illus—
trated by congidering the first case in that section -

(panel 1).
Here
I =oc a, = £(y) = Ay = Py = O
- ° (104)
FezF AS::A
The particular solution is obtained as
’ p(y) = ¢y ¥ + c»p )
po) = 0 t plw) + A pt'(w) = F
¥ A
2(y) = —— L o= b
t (o + 1) W tw
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Next the functions 7Y, (y) satisfy the conditions

. J
Yn(y) =.c, sin A, % + cg cas Ay "
W
Y (o) = 0@ P Y (w) + A Yot (w) =0 wayna dy = 1
. : 0
from which the characteristic numbers A, are determined
as the positive solutions of the equation
. tan 7"11 + o Ap = 0 : (106)

with corresponding normalized characteristic functions

. . ¥
Yn(y) =Y, sin kn';

(107)
Yna - 2

w(l + o cos? Ay )

'The terminal, conditions govefning the function X, (x),
which according to equation (93) is of the form

~ fE g, X /Exnz
5 W o+ ey B w follow

Ci e e , from equations

(102) anda (103)

Xy ()

]
o

Xn(0) = % sin Ay & dy =

W t A

W :
/ﬁ ¥y w Yg F cos Ap (108)
[} ) n

t(a + 1)

from which

' l_..“/_q'.)\ Xz
__W-"Yn F,COS >\n e E nW

X, (x . (109)
n (x) % An
and the solution is obbtained in the form
L G y
7 1 & cos Ay sin k -/ Z A L
Y w T 2w
H=—d-——=i+2 ) e (110)
6 1“ + 1w azn Ay (Ltal cos k )
' Avk. ‘\w“ e 10 et H s B ST > - e
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where
o= 2
T otw
and

L

tan Ay + o Ay, = O

The wvezlidity of this solution can be rigorously
established if the fact is tasken into account that, for
large values of n, _ ] o T

(2n — )7
n - 3

<

A

2
a{2n — 1)

(_)n+ 1

cos. Ay =

Thg Aantisymmetrically Loaded Panel

A solution of equation (B) is assumed in the form

B =2 X(x) Yo (y) + p(y) - (111)

where, in consequence of equation (Bl), tha functiouns

Xp, ITn, and p must satisfy the differentiai equations '

p"' (7)) = 0O (112)
Xp'(x) —(%9-)2 X, (x) =0 (113)
Y, () +<§w£>=3 Y, ' (y)=0 - (114)
and, as before,
by = /3 2 A (115)

Equations (B2) to (B6) are now satisfied if it is
required that ' .

Z Xpo) Tp(y) = — p(y) (llsa)_

-

%3 8¢ Xn(l) + oa; Xn'(L)j'Yn(Y) = f(y) — a, p{y) (1186%b)
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p!(o) = O
t p(w) + A p'(w) = F L (117)
W |
/.p dy = 0
o y
Y (o) = O
t Yolw) + & Y t(w) = O . (118)
/HYn dy = C )
J )

The conditions given in equation (117) together with
the differential eguation (112) uniguely determine p(y),
while Yn(y) must satisfy the boundary value problem con—
sisting of the differential equation (108) arnd the homo-—
genoous boundary conditions of equation (118). Although
this problem 1s not of the conventional Sturm—Liouville
type, it can be shown that the characteristic functlons
Y, are again orthogomal over _(o,w) and that an arbitrary
function F(y) having a continuous second derivative and
satisfying the condition SfY¥F(y)dy = O has a unique

0 .
expoansion of the tyve of equatiom (100) where, if- the
funetions Y, are norpaliéed,

2
[ 1. ay =1 | (119)
[} .
the constants are given by the formula of (101). Thus, if
it is assumed that f(y) satisfies the conditions men—
tioned, equations (116) imply equations (102) and (103).

The solution of the boundary value problem of eguation

(B) in the entire region [o <x < 1, |7 | < w] is given,
as a summary, by '

H =3 X,(x) Yy (y) + p(¥)

where l : —~
P”‘ - 0
p'(o) = 0
t pw) + & p'(w) =F [
AT
/ p dy = 0
A _
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An )2 : R
Yn’"+<—“-;n~> Yn‘ = 0 N
?
Y,'(o) = 0
8 Tp(w) + & Y1 (w) = 0 _
w >
f Yn dy = O
o :
W
2
/ﬁ Y,” 4y =_l , . g
o
2 . - 7
Xp¥ - & /ﬁﬁ\\ X, = 0 '
- B\ w J
w .
Xp(o0) = = Jf p ¥, dy ?
0 ' .
.w PR
Bo Xn(1) + oy %1 (1) = [ (£ - ag 2)Y, a7
. A p
The explicit solution for the case ! ==, a, = f(y) =

is given in equation (24).

The Rectangular Box Beam

If the solution of equation (C) is assumed in the form

H= 2 X, (x) Y(y) + P(z,7) (120)
where . . -
2 2
87 L, &7 (121)
dx” B dy® .
and .
=S 2
1% X"~ pp° X, =0 (122a)
w2 YY" o+ A% T, =0 (1221b)
. T
. =/:_ \ (1220)
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equations (C2) to (C5) take the fornm
z Xp (o) Tply) = — P(o,y) (123a)
E{éo Xp(l)+a, X '(Z)j-Y (v) = f(Y)—-[ao P(1,y)+a Py (z,y)J (123b) -

5 2t ¥ (o) — 4, Y ‘(o)} Xq (x) = «[28 P (x,0) = by By (x,0)] (123¢)

~I o -
%1\—5 Yo (w) + Yn’(w)j X, (x)
= M(x) & = L%ﬁ P(x,w) + I, Py(x,w)] (1234)

It is first shown that, if M(x) can be expressed
as a polynomisl in x, a function P(x, y) satisfying
equation (121) can be determined as a polynomial in x
and ¥y so that the right—hand sides of eguations (123c)
and (123d) varnish. and

. i |
P(x,0) — % Py(xjo) =0 (124a)

2 p(xaw) + I, By lxow) = HGx) B (1240)

It can be directly verified that the expression

r ;— A 3 A <2 A =

P(x,y) = =\ M(x) |7 + 2 ~ 2 v (x) (i’-— + 2L kl(w—-’ﬂj
y5 A y4 3 A aN A

SORCIERE TORNCIE TN )
' Et 4'/ 3! 2t 21 2t

\

/
(2N W (2. ER SN Ly, (35, e gt (£ f’:ef.)
<G/I (x)!<, T s' (éz Y 41>'+ SACTRETIEY

An N\ : ' S
-—1c3<y e /] P (125)

where the law o0f formation of the following terms is obvious,
satisfiss the differential equation (121) and the condi-
tion of equation (124a) for an arbitrary choice of tha
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constants k,, kg, » + -+ «+ . The factor g%, where I

1s the total moment of inertia of the cross section about
the transverse principal axis and is glven as

— Am 2
I =1I,+ I, + Y h (135)
M A
has bPeen chosen so that the leading term af) g ¥y + 5%

satisfies the condition of equation (134b). The constant
k, is then determined so that the coefficient of . H"(x)
in equation (124b) vanishes and

2 Ay ¥ o _ o
Xk, = X2 {}1 + 3L ) + =2 (I_. + 2I,) (127)

61 § w 2tw 8 W.f
after which the constants kg, kg, . « ._can be deter~
mined so that the coefficients of MIV(X) M'I(x), . .

in equation (124b) vanish. It appears thab, iIf (x) in-—
volves only odd powers of x, the polynomial P(x,y)
satisfies also equation (C2) as well as equations (Cl),
(C4), and (65). It may also be noticed that %the leading

M(xz) h AL ' . :
tern —T 5 vy + 3t corresponds to the stress distri-—

bution given b& the slemsntary fheory of the strength of
materials, according to which the sPanwise .normal stress
Oy does not vary imn the transverse dirsection,.

The conditions of equations (123c¢c) and (1234) are now

fulfilled if Y,(y) satisfies the Sturm—Liouv1lle Problem

consisting of the differential equatlon ) -

2 2 =
w2 T " e AR Y =0 _ (;?g)

and the homogeneous boundary conditions

Y_ (o) — ‘-:—fg Y, ' (o)
) (129)
00 ¢ T, )

If it is assumed that f£(y) has a continuous second
derivative in (o,w), it follows from the remarks mads
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in connection with equations (100) and (101) that, if
condition (97) is imposed, oquations (123a) and (123b)
imply ‘

W
X, (o) = —-JF Plo,y)¥y(y) dy (130a}
o )

agky (L) + alxnl(z)=‘jHX%(y)-aoP(z,y)-alax(a,yZ}Yn(y)ay (130%)
' o]

and these conditions, together with equations (122a) and
(122¢), determine X, (x). :

Hence, finally, the sglution of the problem of egua-—
tion (C), in case M{(x) can be oxpressed as a polynomial,
is given by equation (220), where P(x,y) is given in
equation (125), Y (y) is determined by ocquabions (128)
and (129), and Xn?x) is determined by equations (122a)
and (130). '

The "effective arca of the combined cover sheetand
central stiffener, defined by the relationship

boprox(x,w) = (Ap + 2tw) ppox(x,w) = EtJﬁ’Gxdy+-Amcx(x,o) (131)
o
can be expressed In terms of the élementary normeal stress
Ty s
M(x)
I

wis

. o, (x) =

and the actual flange and stif fener stresses as follows.
If equations (7a), (88), (90), and (126) are used

Ace o, (x,w) 2t [H(x,w) - H(x,0+)] + 4, oy (x,0)

2tw ["I‘I‘— G'b (I) _-'. B O'X(JC,W)]

5]

2tw [(B + 1) 0y (x) = B oy (x,w)]

and, finally,
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- i Oy (=) 1
bogp = 2tw<{ 1 — (B + 1) ’1 - —— (132)
1 L dx(x,w) J

In particular, if no ceatral stiffener is present, the ) -
ratio of the effective width of the cover sheet 50 the ' -
actunl width is given by the oxpression N STt =

r (x)
Yoff - (p sy |1 22 (153)
w cx(xaw)

The evaluation of the solution may be illustrated
by taking -the case of s concentrated tip load F for
which _ -

M(x) = Fx - (134)

and the stress function is determined for an end—support N
condition of the form _ -

' - QE(1 _
H(1,y) + ‘a, —~;xdﬁ =.0 (135) o

It is further assumed that no.central sheet stiffener is _
present. First, from equation (125), it follows that =~ ~~ - ~

P(I:Y) = co %‘y

' 1
_ (136)
Y -
Next, from couations (128) and (129), the constants Ay
are determined as the solutions of the equation o
tan Ay, + BAy = 0
(137)
B = 1%
I, B}

while the functions Ynxf) 'Egké.the form

e — e am— =
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Yn(y) = 'Yn ein ?\n

]

z 2 (138)

N e e B
w(l+ B cos®xr,)

n

The terninal conditions governing the functions X, (x)
bocome, according to equation (130},

X,(0) = O
. cos A (139)
, n
a Xn(1)+a X, ' (1) = %T(L aotay)o Yy (B4 1) ———
n
and hence, from eguation (122)
- cos A, (lag+ay)sinh py %
Xp(x) = w- oq Yy (B+1) < (140)
n lag,sinh ppta; by coshpy

If these expressions are introduced into squation (120),
the stress funchtion 1s determined in the form

X  cos knsin?\n% (1 a5 + a;)sinh py, x

3 [
H=wo, %‘_%+ 2(B+1)> (141)

Ldlhn(l+5coszln) lagsinbpp+alby coshy

n= :

The stress patterns derived from equation (141) in the
cases &, = 0 and. a; = 0 were discussed in a preceding
section,” 7

In case the sheet, the stiffener, and the slde struc—
ture ere rigidly clamped at x = 1, so that ag = f(y) = 0
in equations (G3) and (123a), the general solution for arbi-
trary M(x) can also be obtained very simply by the alter—
nate procedure menfioned at the beginning of this section.
If P(x,y) = 0, equations (123a) and (123b) are satisfied
if Xp(o) = X,'(1) = O so that, from equation (122),

b = (2n — 1)k \L .
n =
2 (148)

fote) - win 2z | -

21
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Equations (122) and (123c) require that

A
Yn(Y) = cn,<sinh 8n % + 2.8 cosh 8y §> “1

2tw T
” (143)
5 (2n — I)W/ﬁ W
n < c 1
2 G 1
- J
and, if
oo
M(x) L S; an sin (2n — 1)mx : .- (144)
a 2 gl . zz - .
n=1 - T s
equation (1234) detsrmines H 1in the form
= W A ( 1) -
S a ' ' ¥ 2n—
= Y -2 (sinps, L + ——= cosh b ;> sin ———:T%_(145)
S Yn i Stw W 21
n=1
vhero | _ I
¥ I ( inh An h s.> |
= gsinh 6§, + —— & cos
n s B 2tw O & -
+ &, I, \cosh &n + Ste 8§, sinh 8p 145a
Thissolution was given for the special case in which 4p = 0
X : :
and M = M, sin 3T by Younger (reference 4) and for arbi-

trary M with Ay = O by Kuhn (refsrence 3).

The Semi—Infinite Sheet with One Stiffener

In order to determine the stress function correspond-—
ing to the state of stress in a semi-—infinite sheet sub—
jected to a load introduced into a stiffener normal to the
straight—edge (fig. 3(a)), a different type of procedure
is needed. If the ¥y 'axis is taken along the stralghi-—
edge and the x axis coincides with the stiffener and if
the sheet is assumed rigid in the y direction, the stress
function H is determined by the differential equation
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2 2 e '
0°H + & E_E = Q7 (146)

3x® E ?dy®

and the boundary con@itinns

H(o,y) = O (1472)

H(w,y) = O (147D)

-2t H(x,0) + 4 9545421 = ¥ (147¢)
oy

H(x,») = 0° (1474)

If it is assumed that H is the Laplace transform of a
function g to be determined, it follows that

oo i .
B(x,y) = f ¢ 7® glx,p) dp (148)
.'o
The differentisl equation (146) requirss that g satisfy
the equation . : .

. =04§ (149)

while condition (147a) is satisfied if
gf(o,p) = G _ (150)
so that
g(z,p) = h(p) sin k x p : (151)
where h 1s an arbitrary function of p.

If this expression is introduced into equabtion (148),
‘condition. (147c) requires that h(p) satisfy the integral

equgtion . .
(o]

5

/ (2t + & p) h(p) sin k x p dp = F (152)
o] ; .
which has as solution the expression
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___ 1

h(p) — -
T p(2¢ + Ap)

(153)

Thus a formal solution of the problem is determined
in the form

(=]

oF - in k
H o= — 22 /ﬁ yp srnx X 3 dp (154)

e
A 2%
(e} ——
P(:p'+ )y

It can be shown without difficulty that the conditions of
equations (147b) and (1474) are satisfied and, furthermore,
that the expression (154) constitutes the rigorous solu—
tion of the problem,

The stress distribution gssociated with eguation
(154) was discussed in a previous section,

COMPARISON OF APPROXIMATE PROCEDURES

Axially Loaded Pansls . -

Although the analysis of panels 1s not included in
reference 1, approximate solutions for most of the cases
considered in the third section can be found by the pro—
cedure of reference 2. Ian that procedure the effect of
the transverse stretching of the sheet is neglected, in
accordance with the present theory. In gddition, it is
assumed that the resistivity of the sheet in the spanwisse
direction can be neglescted if the sheet area is added to
the area of the central longitudinal, or treated as a
fictitious central stiffness in the absence of a longil-
tddinal, and a substitute width of one—hglf the actual
pansl width 1s used in the subsequent calculations. o

In order to investlgate the agreement between the
Tesults of this procedure and the present results, panel
8 (fig. 4(n)) is considered. In this case the expres—
sions for the flange stress cx(x,w) and for the average
spanwise normal stress O,(x) “are obtained in the form

| | 2F Ay + 2% w _g X
oplx,w) = — (1 e AN w> (155)
Ap + 2Aq + 2t w 24, | _

an d
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2F -x 2
o, (x) = e . '(1 - e W) (156)
Ap + 24, + 2t w

where X 1is a fimensionless constant defined by the
relationship

Ka-—-t-—

+ -l-> . (157)
Ap + 2% w A _ ,

The tramsverse variation of the spanwise normal stress

at esach . ssction. ig assumed in reference 2 to follow a
hypnerbolic—cosine law, in terms of whizh tre strecs vari—
ation in the longitudinal can be expressed.

For the numerical evaluation of the solutions two
cases are chosen

L Am = % ow
(a) . (158)
.A.e = '5' t w
m=95%tw
(o) _ (159)
5] N
.A.e = -:-a— t W

corresponding, respectively, to the cases a = % and

@ = g- in the third section. Figures 16(a) and 16(b)
present a comparison of the results of the two procedures.
It may be noticed that the Xuhn solution in general over—
estimates the magnitude of the flange stresses and under—
estimates the longitudinal stresses, with a resultant in-—
crease in the predicted shear—lag effect, which becomes
smaller as the contribution of the sheet to the total ares

of the panel decreases. )

The deviation of the Kuhn solution from the exact
solution in the nelghborhood of the loaded end of the
panel is partly due to the fact that, in this region, the
transverse variation of the normsl strese cannoct be sat—
isfactorily approximgted by a hyperbolic—cosine law.
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Doubly Symmetrical Box Beam with Concentrated Tip Load

If- it is assumed that no centfai.sheet stiffener is
present, the stresses given by the procedure in reference
1 can be written in the form

X
x 7 (36 + 1)(ep+ 1) °Sivk KR T
o (x,0) = 0y {= — — ~ (160)
b 2 51B° + 18P + 2 Kp cosh Xy
{ 8 + 1 sinh Xp =
cz(X,W) = GO £ + 7 6. - - e (161)
v 51 B2 + 18 B + 2 Kg cosh Ky

where o, and B are defined by equations (44) and (45)
and the parameter Xy 1s defined by i

K, ? = 21 = (e +al)<6'5 + 1) -<l>2 - (162)
E 51 B + 18 B + 2 \V¥

This solution was obtained by an application of the method
of least work, under the assumption of & parabolic trans—
verse distribution of the spanwise normal stresg Ox.

According to the procedure of reference 2, it is_nec—
essary .to incorporate the sheet area 2tw into 5 ficti-
tious central stiffness. The following expressions are

then obtained for the flange stress anrd the average sheet
stresst . . e 2 R
rx 1 sinh K %
o (x,w) =0 {5+ £ == (163)
x ! . B K cosh X . )
¢ ' ( sinh K %'] _
N 1 x . = .
o (x) = o, T - -r . (164)
X cosh X j
where
. e v 1/ 1\2 _ - e L
g2 = 3 - B (-) (165)
E B Y

The stress variation along the center ling of thé sheet is
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again determined by assuming that the sheet normal stress
varies according to a hyperbolic—cosine lgw in the trgns—
,verse direction,.

For a numerical comparison of these solutions, %the
following values of the parameters are chosen in the same
way a¢ in the third section:

~
A
w5
I
B = % = 1 . (L66)
IS .
G _3
A 8 J

c
The shear—lsg functions < —§£E$El —-%) and
' (o3 o

g _(x,o0 - _ .
< o ~.5> ! agcording to the two procedures, are
o :

compared with the corresponding functions obtained by the
pPresent procedure 1n figure 17, . It is seen that the
Reissner solution is in close agreement with the Present
solution, except in the immediate vicinity of the fixed
end, where differences of 11 percent and 8 percent occur
in the stress corrections at the c¢enter of the shest and
at the flanges, respectively, corresponding to differences
of 2.7 percent and 0.8 percent, respectively, in the val—
ues 0f the stresses themselves.. The shear—lag effect
predicted by the Kuhn solutlon is again considerably
greater than that given by the present procedure. Diffgr-—
ences of 62 percent and 35 percent are present in the
root—stress cofrections at the center of the sheet and at
the flanges, respectively, corresponding to differences of
15 percent and 4 percent in the amctual stress values.

In view of the fact that for g uniform box beam sub-—
Jected to a concentrated tip load, the shear—lag effect
is comparatively small and is appreciadble over only a
-small part of the span, it seems desirgble further to com—
pare the solutions obtained by the approximate methods and
by the present procedure for other types of beam and load—
ing where the shear—lag effects mre more pronounced.

Bffect of a Out-Out in the Cover Sheet of a Box Beam

The Reissner procedure 1s not directly applicable to

~
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the analysis 9f cover sheets with cut—oubs, since in the
vicinity of the cubt—out the transverse distribution of
Oy 1s no longer approximated by a parabola. It may be
pointed out that a least—work solution of the type con-—
sidered in that procedure would be obtained if it were
assumed that the difference between the actual normal

stress oy and the elementary stress o % is expres—

sible as the product of a function of =x and a function

of y. If then the conditions of equilibrium were satis—
fied and the method of least work were applied, & correc—
tion would be "obtained that would be identical with the
first term of tha series given in equation (57). The cor-—
responding stress pabtern, for the values of the parameters
listed in egquation (166), is compared in figure 18 with

the patbtern obtained by retaining the complete series.

It is seen that the first term of the series affords a
reasongbly accurate correction at & distance from the
cut—out greater than one—half the width of the sheet.

The corresponding solution according to the Kuhn .pro-—
cedure can be written in the form

[ sinh K X |
ox(x,w) = 049 % + L - - (187)
* B sinn X
- |
" (_ s . : ’ N i . . . .
S sinh K % T
oa(x) = 0oy F - ——— - (168)
sinh X
- .
where., as before, 0, (x) 1is the average sheet stress and

E is defined by equation (165). The stress patterns,

for the values of the parameters given in equation (166},
are compared with the present results in figure 19, It

is seen that the shear—lag effect is greatly overestimated
by the Kuhn solution and that, except in the immediate
vicinity of the cut—out where the stresses are already
knowa, & better aspproximation to the actual stresses is
given by the first two terms of the present solution.

NUMERICAL APPLICATION OF THE THEORY TO A TEST PANEL

In order to illustrate further the numerical evalu—
ation of the exact theory, the panel sketched in figure
4(J) is analyzed. The results are then compared with the
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experimental test reosults rgportsd in reference 3 and with
the approximate roesults Ppresetfited in that paper.

If the stress function (30) is modified in accordance
with the staotement at the beglnnlng of - the third sgction
and if

¥, =0
and
Gz=2ccm

the expressions for tho. stiffenor and flango strosses fol—
low from cguation (7a) in tho form

4
- e -—
7 =k . cosﬁ/’E Kn p”
ox(x,0) = : R . (169)
(3am * 1)tw n=3 e coshé/g-k' . J
: E % ow
B
o (x,v) = 2
(Bay + 1L)tw
—x
e K: ) cosh Ekn—;—
1 - ; F— (cos Ay — aghy sin Ay) >(170)
n=1 ° I cosh %}‘n%
~

whore, from equation (34), the constants Ap arc tho
gsolutions of the equation - - = -

Ex

, ) 3C‘bm An i .
tan A, = ! (171)

2o A%~ 1

and tho dofinitions of the reonainiag constants, as given
in eguations (32) and (33), tako the form

1 w
= (2R — sin 2N\,) — 2apy- Kq(cos 2hp — 1)
Ya? o 4, 1 .
+ ap® Apy®(2h, + sin 2%, )r (172)
K w f A
o = ng'i(Sin An = Ap cos Ap) + an(l + am)Ay sin Ay (173)
n° 4
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In accordance with the notation of the._ third sec—
tion, the following data are to be assumed:

-

Ty =0
P, = 2400
w = 4,60
I = 36
> (174)
t = 0,016 S : ]
by = &, = 0.366 .
& - 0,4 - . S
i . .
and hence, fron equation (31), i o
o= 2og
(175)
@, = 2+487

FPirst, from equation (171}, the parameters A, are deter— N

nined readily by & method of successive approxinations,
after which the following table is: construCUed fron equa—
tions (172) ana (173}:

A fn oy 2 A Ap sin A :
n o - Fo Yn cos Ap — ap Ap sin A,
e
1 0.7521 1.0522 —0.5478 (176}
2 3.323 —.1229 . 5704 o
3 6.397 .0412 —~.8134

The results obtained by 11troduc1ng the data of equabtions
(174), (175), and (176) into eguations (169) and %170) are
presented in tabular forn and the computed stresses are  _
conpared with the corraesponding values determined by
approxinagte fornulas given by Kuhn in reference 3,as fol-—
lows: = _ -
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Solution by eguation (169) sofﬁ??on
First | Second| Third|{ Fourth

X ternm term term, term cx(x,o) cx(x,o)
o | 3850 | —4050 470 ~160| 110 (0) 0
3 | 3850 | —2970 120 —10{ 990 930
5 | 3850 | —2420 50| —————{1480 1500
8 | 3850 | —1770 10| —~————12090 2110
10 | 3850 | —1440 2420 2420
15 | 3850 —~860 2990 2960
20 | 3850 -530 3320 3300
25 | 3850 | —330 3520 3500
30 | 3850 —230 3620 3600
36 | 3850 -190 3660 3630
Solution by equation (1%0) sofiiﬁon
o T R R R s
0 3850 2220 270 1306470 (6560) 5960
3 | 3850 | 1630 70 10{6560 5420
5 | 3850 | 1330 30| ———1]5210 5140
8 | 3850 §70 . 10| ————]2830 4810
10 | 3850 800 -14650 4640
15 | 3850 | 480 4330 4330
20 | 3850 290 4140 4160
25 | 3850 190 4040 4050
30 | 3850 130 3980 4000
36 | 3850 110 3960 3980

(177)

(178)
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The calculated stresses, together with the test data =
taken from reference 3, are presented grephically in fig—
ure 20. . ' -

It is seen that the convergence of the series ig.
gufficiently rapid that only two terms of the correction
gseries need be retained. While the prescribed boundary
values (noted in parenuheses in equations (177) and (178))
are not yet attained, this fact is of no consequence since
the values are known and since the calculated stress val-—
nes at a distance of only 3 inches from the free ‘end are
apparently accurate to three significant figures. The
Kuhn solution was calculated by associating one—half the
shoet area with the longitudinal and the remainder with
the two flanges, and is in very good agreement with ile
present solution except near the point of load applica-—
tion,

The discrepancies between the theoretical and the
test values, as was pointed out in reference 3, can be
attributed to two factors: (1) because of the magnitude
of the loading, an observed tension fold was developed on
each side of the panel near the loaded end, reducing the
effective shear modulus in this region; and (2) the fact
that the flange stress readings near the root of the pazdel
are actually less than the statically requisite limiting
values for an infinitely long panel must be accounted for
by aessumling an elastic deformation of the steel trlangle
which served as the pansl support.

MHISCELLANEOQOUS EXTENSIONS ARD MODIFICATIONS OF THE THECRY

Lnalysis of Tapered Box Beams

The procedurs given in this paper can be extended in
many cases to apply to box beams or panels the cross—
sectional characteristics of which vary along the span.
Three explicit cases may be mentioned hers.

Taper in beam height.— The basic equations (C) again
apply. If it 1s assumed that the side—wed characteristics
also vary in such a way that the ratio of the contributions
of the web and of the sheet to the total stiffness of the
beam remains constant along the span, so that Co

B = X = constant . (a79)
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the effect of varying helght can be taken into account by

h 42 (T! h
merely replacin —_ M(x) by in the
P & 2I axh :dxn -]

%efinition-of the function P(x,y) as given in equation
125).

Tapor 3in cover—sheet thickngss.— If the problem is
formulated in terms of the stress rosultants rather than
in terms of the stresses themselves and if g stress func—
tion @ is defined, in terms of which

0%

% =
W (180)
180

‘bT:-—-gg

IX

it 1s found that ¢ 1is determined. by the differential
equgtion ’

i 2 ’
a Ll 3¢ ] »y 2232 .0 : (181)
] Bx E dy*®

and boundary conditions that differ from those which
apply-to the function H in equation (C) only by the sub-—
stitution of & M(x) for M(x). If it is assumed that

Ay

j; = constant

I (182)
w

E— = constant

the solution can be readily obtained in terms of Bessel
functions; by a modification of the procedure of a preced—
ing section for beams in which the cover—sheet thickness
varies according to a law of the form

t(x) = to(x + xo)? _. } (183)

For example, if a box boam- in which the cover —shge’
thickness tEpers 1inearly to zero et the free cnd, so
that
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t(x) = tR-’-;- (184)

is subjected to a tniformly distributed losd of inteislty

o so that —_

“o?
l . ’ o -
H(x) = = v, x® (185)

and if the beam is fixed at the end x-= 1 (ao central

sheet stiffener being present), the stross function P
is obtained in the form S —

- _ YI/ x>
v o cos K sin K En 1\\un 1
T . )

L
+.4(8 + 1) /= (185)
G n=1 A 2(1'{‘3 COSa?\ Io(l-"n) J
where I, and I; are modified Bessel functions of the
first kind, of orders gzero and one, O, 1is the maximum

elementary stress, and the remaining quantities arec -de—
fined in equations (45) and (46). Fron equation (180)
the stresses are given by the exnreSSlons

I T cos A, cos Ay = I /H =
£ COS Ap COS Ap = Ly\Mn F,
o, = o, % +oa(p+ 1) z % 2d w T (187)
n=y M (1+B cos®r,)  Ig(pyg)

® cos A, sin Kn %f Io(%n %\ 5
/
T= — o0, Z+4 (B+1) Y S : F xx_ (18)
n.;—Jl (l + B cos >‘-n) Io(l—‘n) GOT

An approximate solution of the same problem is given in
refereonce 5.

Tapered cover—sheoet width,-— The principal modifica—
tion necessary in case the width of the sheet varies ia
tho spanwise dirgection arises from the fact that the nor—
mal stress in the flange can nd longer be identlfied with
the spanwise normal stress in the adjacent sheet flbers,
but is related to the sheet stresses by the expression
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[o(x)]

flange=:qx(x’w)¢9saa+ cy(xiw)91n364“ﬂx,W)sin 25 (189)

where & 1is the angle between the x—axis and tho normal
to the edge of the sheet.
A More Goneral Olass of End—Support Conditions

If cquation (C3) is replaced by a condition of the
more gensral form

2 3
aoH(l,y)+a1 _gax .l a_%£%4ll + ag é~%ﬁﬁfﬂl+,,_=f(y) (190)

equation (122) can bo uscd to rewrito the cquation replac—
ing cquation (123b) in the form

?{|ao+a3 <——-> .] X, ()
. Lal+ az,( > ..'..._:xn'(z)} Y_(y)

= f (Y)"' [a-OP(l’ )y)+_9'1'Px<7' ,.'Y’)‘l'azP.xx(z',Y)+&3Pxxx(7',5’)j"- . -] (191)
The only modification in the solution therofore consists

in replacing the terminal conditicn of equation (130b) by
+the condiltion

{ao + ag<;%?‘> +....]X (1) + La1l+ £a (1?jf + .....]Xﬁ'(l)

W
r ' ‘ . -
= J/ i.f(p) - aUP(W;u)_,alPx(t,u)f-ae Pxx(l,u)f.....}Yn(u)du
o} . )
(192)

For example, 1f the box beam is attached to an elas—
tic sprlngllkc suppont the end condition is of the form

u<z'sy) -—-CO' (I'!Y) e (193)

If both sides of equation (183) ars differontiated with
respeet to ¥y, and if equations (5), (7), and (C1) are
used, this condition can be written
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aH(l,Y) + ¢ B bZE(Z,y) =.0

dx dx3 (194)

For the case of a concentrataed tip load, cquation (139b)
is now replaced,according to equation (192), by

2 A

W 2 . w cos
c B 7?) (W) + 2,7 (0) = - Go Yo (B + 1) ‘X“E (195)

n

so that, in place of ogquation (140), S

' . x - . AR

cos Ay sinfi Mn 7 '
X (x)=w0 ¥ p (B+1) ——5— - =~ e (196)
n

. e : .
_?nLHf sinh W, + pp cosh pn

and the stress funchion is obtained in the form

H = g E Z N -
LALPI el :
@, cog A, sinig T sinh pg, %
+ 2(8 + 1) /R % y o ' L Y (1em)
G . Ap(1+B cos®A )

n=1 u SlnthﬁCOShun

Box Begm with One Cover Shest . )
If a box beam carries a cover sheet on only one side,
the equetion of moment equilibrium gbout the neutral axie
beconmes (sce reference 6, p. 11, equation (12))

W
Iw - & I
Iwox(x,w)+-2t<§24.z; > JF oxdy+ Ay (d + E§j>= M(x)a (198)
o

where, in addition to the cons'tants previouwsly defineds

A is the cross—sectional area of the two side webs _

(including the corner flanges) and 4 1is the distance from

the plane of the cover sheet to the neutral axis. If equa—

tion (198) is expressed in terms of H and if equation

(88) is taken into account, equation (90) is now replaced

by the condition o . -
Sty (dg_'_ IW H(X,W) BH('X,W)

o ACANI,

K; v w _—%y

= H(x)a {193)
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It follows that the results of the preceding sections can -
be applied directly to this case if Ig 1e replaced by -

I
2t w <d3+ —‘i> and
Ay

CONCLUDING REMARKS

by d.

Wl

The shear—lag analysis of the present papcr prescnts
nathematically exact solutions of several problems that
have been previously treated in general by approxinate
nethods, Although the rosults gtrictly apply only to
beams and panels that are theoretically rigid in the
transverse dirsction, 1t seems probable that they ars
applicable with roasonable accuracy in actual casee when
stiff chordwise ribs are presont. The solutions are ob—
tained in the form of rapidly convergent infinite series
that are much more adaptable to numerical computation
than exact solutions that have been given elsewhere 1n
certain special cases. - : )

On the basis of comparisons of the present results
with approximate solutions given by Relssner and by XKuhn
and Chiarito, 1%t 'appears that -in cases when both the
approxinate solutions are applicable, for example, uniform
rectangular box beans without cut—outs, the Relssner solu—
tions are in better agreemient with the exact solutions than
are the solutions given by the methods of Kuhn and Chiarito, o
In other cases for which the Reissner proccdure was not
designed, for example, box beals with cut—outs and panels
loaded by concentrated axial_-forces, the solutions given
by the procedure of XKuhn and Chiarito predict shear—lag
cffecte that are in goneral considerably larger than those
givon_by the present procedure. '

Department of Mathematies,
Massachusetts Instltute of Technology,
Cambridge, Mass., July 1942.
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Table 1.- Solutions of tan Ay + @y = O,

An

n C= 1 0= 5
1 2,0288 1.6387
2 4,0132 4. 7544
] . 7 .8754
4 11.0886 11,0137
.} 14.2074 14,1515
8 17,5364 17.2903
bl 20,4692 20,4301
8 £3.8043 &3 ,.5704
[} 26,7409 £6,7110
- 20 20,8786 28,0618
11 33,0170 32,0028
12 38,1660 38,1330
13 39,2064 30.2750
14 42,4351 42,4168
15 48,6760 45.6675

Teble £, - Stressss in Pansl Fo. 1.

Table 3.- 8olutions of tan Ap = ———.3’1———-

p” + 1
A
n C=a 0 =1 d= 5
1 4,4854 34056 8.2028
2 77253 6.4338 63147
] -+ 1049041 8, 5278 94,4459
4 14,0662 12.6448 12,5823 °
-] 17.2208 16,7710 16.7207
8 20,3713 18,9025 18.8602
7 25.5196 £22.03564 22,0002
a8 26.6661 85,1724 25.14C7
o 29.8116 28.3096 28.2814
10 32,9664 31.4477 31,4283
pul 36.1008 34,5864 34,5683
32 50.2444 37.7266 37.7044
13 42,3879 40,8082 40.8458
14 45,5311 44.0060 43,9869
15 48,6742 47,1461 - 4441281

Table 4.- Stresses 1n Pensl No. 2.

28

¥38 *ON 0300 TWOTUGOSTL VOVK

a=1 a=5 a=0 o= 1 xa 6 = 0
X
I Bo(xolbodcmpz,m ‘%&&P)'édx(:,' 1(x,w) %’6:(:9)‘?01(::,') X -#viv}‘r(x.qiﬁf(z,')%q(m $70x, 9B 70z, m)Fox(zm | Fr(x,0)
4] 0 1. - o 1- i 0 e [4] . 21 T - l. +250 bt - -
0¢1 /| (036 | .88 r.vo 082 | 07 |-1,06 #0986 | 20.43 0.1 | 911 | 289 [-.55 | .980 | .224 |-,67 |11.6 1.0le
0,2 | o071 | 816 [-4843 | (118 | +0BL | —.806 { 190 | E.26 0.2 | «B67 | «160 [~e340 | <872 | +198 |-420 | 6.57 728
Oud | #1508 | 728 |..330 | <215 | OR5 | ~.665 | 367 | £.726 0.4 { 818 | 223 [-.271 | 960 | .140 [-.226 | 4.225 <418
0.8 | 4268 | 4688 [_.272 | o391 | 4891 | -,310 | 647 | 1.546 0,8 | 7768 | 2056 [-.089 | .044 | ,070 |..086 | 3.279 <150
1e2 [ 343 | 876 |_.007 | o850 ( 871 | -.200] .B19 |. 1.B2R1 1,2 | J761 | +026 (-.0R4 | o941 | 054 |-.036 | 3.081 <083
1.8 | «402 | 546 | _.068 | .628 | .868 | -,129 | 012 | 1.097 1.6 | 765 | <011 |-.010 | 830 | <016 [-.008 | 3.026 | 018
240 | 4440 | 4528 |-.054 | €97 | 850 | -.085 ] .058 | 1.044 2,0 | J755 | +005 [-.004 | 937 | 007 |-.007 | 3.008 008
340 | o488 | 4508 | 010 | o784 | B39 | -.050 | .84 | 1.008 3.0 | 761 | »001 |-.001 { .935 | .00l [-.002 | 3,001 .
5.0 | 489 | .50 |-.001 | .828 | B34 | -.004 [ 1,000 | 1.000 5.0 | 750 | »000 [-.000 | .938 | .000 |-.000 | 3,000 +000




Table 6.~ Solutions of oot Ay ~ Sody = 0.
Table 7.~ Btresses in Penal Noes 7.

*n o= 1/3 d= 5/3
n d= 1/3 d= 5/2 i
1 86035 13284 w %B“x("") # (W) Yo (x,m [ 1txm
2 344256 35,2039 5 T — I —
i S:m’ S:iié% 0.06 887 - <954 965 -1.88
5 12.6‘53 m.maﬁ 0!1 -.’85 - .'716 . .920 “'1.6%
8 16.7713 15,7207 0.2 «887 - 4500 662 ~1.54%
7 18.0024 18,8604 Oud 608 —~»319 +768 -1.001
8 22,0365 22,0008 . 0.8 <400 - «688 - 940
9 26,1784 25,1407 0.8 «318 —ol77 «814 ~«888
10 28,3098 +2814 . 1.0 « 257 -139 - —oT38
11 51-“'77 31-42% 1'5 0151 —Dmo -423 --581
1g 34.5064 34,5633 2e8 +062 -+028 »240 —~e330
13 STLTRE6 37,7044 5.0 «004 -+008 «006 —s 008
14 40.5852 40,8456
b1 -3 44,0050 43.98690
Table 6.~ Jtresses in Panel Xo. E. Table Ba, - 3tresses in Pupel Mo, 8. (4~ %)
a=1/3 ) o= 5/3 % ?ax(x%z(&%) or{x,n) %‘Bﬁxsu) k-ﬂf(x,ﬂ
X A +
£ o'x L4 FU:(IF T(I ') ) x w . 0 Q 1] 1 «09 -
:_IF ) [P I x gt x.m) 0,06 | <008 | 018 | .876 Q9 | ~.B69
% | Gsa | 2e |- % | % |-15 o5 | o | o | 7ae | et |Tiem
0.086 L58 88 -79 +062 <97 ~1.08 . . »0b3 . - ~-a
0.1 | 2071 | .616 | -.5es | w313 | seer | -.806 0.2 030 | J089 | .67 w082 | —.410
Q.16 <106 o766 | -.418 164 <937 - <857 0.3 «048 «101 +8256 O -e312
0.8 .139 «7E8 ~s338 <223 + 988 - o 563 0.4 .M1 »128 « 65690 074 -+ 245
0.4 «256 828 | -.178 301 A9 | -.319 0.8 -088 278 +438 087 | -.164
0.6 .345 .E’e --09'7 .550 -3'71 ~ o200 058 'm .801 -452 .060 -.117
0.8 «402 +646 | _,088 «828 +068 ~e120 1.0 w135 +220 392 «062 - 087
1.0 440 o528 | ~.034 «897 2860 | —.085 2,0 «£207 +248 +£08 #OSE | ~.085
1.5 «482 308 | —010 «184 | 8%8 | —.050 5.0 v248 «2560 «252 «00L | —a001
2.5 «490 «B0L | -~ 001 028 | 854 | -.004

789 °OK 040N TEOTUNORI VOVA

£9




Table &b.- Stresses In Pansl No, 8. (d = g)

X A y
¥ [Foxtzo| Pl Rox(axt1tx,0) [Aorx,m)
0 0 0 1 «40

0.05 .w'? -051 .965 -40 "1.“
17% 3 <018 +0E6 « 835 «400 |=1.208
0.15 024 . « 903 «509 =1.008
0.2 +082 108 B95 +307 ~«950
0.3 048 184 «888 | «392 ~ «8056
04 «082 +195 «829 «386 =708
0.8 093 +26B 778 570 —~«B70
0,8 22 «314 v 736 »350 —~o 478
1.0 149 +349 701 o326 | -,411
£,0 +256 «408 «580 +210 —.E2)
5.0 +385 «416 + 450 =043 ~a044

Table 94 —Xdge Stresses in Unstiffensd Panels. (ct = 0)

i/
Fox(x,w),

z Panel No. 7 Panel No. 8 Pansl No. 2
041 10,524 10.330 11.612
0.2 5o452 5.078 8.572
0.3 5,842 3.280 4,975
Oud 5.092 2,388 4.925
0.6 2448 1.400 3554
0,8 2e194 800 5.279
1.0 2,088 598 3148
1,85 £,0358 »564 3.071
1,80 2,012 .24 3.054
8.0 2,002 088 3.008
2.8 2,000 +032 3.008

Table 10, 8tresses In Cover Shest of Box Bemm Without Cutont.

p=1 p=0

T |oxtzpVeo| oxlx,wfop ox(xpVo, | oxl3m) /0,

0 Q [} Q 0
0.1 089 «100 «100 «100
0e2 »199 «201 200 »200
Qa3 «297 % 1) »00 « 300
0.4 +504 <405 +400 +401
0.6 +480 « 505 « 409 +502
Q.8 « 580 «609 +595 o805
0,7 +B84 « 716 «689 712
0.8 734 «831 T2 838
[+ 782 «959 «83355 1.000
0,988 «795 1.038 +850 1,150
0a8 |——m— i . 1258
09 || — - = l.487
1-00 .800 1.1{'!0 .856 a0

Table 1l.-— Tranaverse Distritmtion of Root Normel Stress

in Cover Sheet ‘of Box Besm Withomt Cutout.

y . ox(1,¥}/o,

v B = ] ﬂ o

0 «800 =856
0.2 «801 «868
0.2 «807 »866
0.3 817 «B880
0.4 «831 «900
0.5 «861 «$28
0.8 «878 966
Q.7 «908 1,020
0.8 +96) 1.100
0,90 1.011 1,042
0,90 -—- 1,720
0,598 - 2,198
1.000 1.120 -

783 ‘o oK THOTWO0I TOVK




Tabla 12, - Spanwias Varistion of Cover-sheet Effeotive Width.

Teble 14,
Stresses in stiffened 8tresess ln unstiffenad

- half-gheet, half-sheet’,

Toff 2

v Fized sheet Free sheet '\/ € sx %dx(x o)\/E A11x,0) v Gx b ox(x,0)
4 ’ P S k]
z P 1 B =0 =11 E=0 E A \/gr E% F
4] 1. o 0 -

0 Lo 1. 1. 1. 0,01 «968 2,574 0401 6366
0.1 +994 1.000 »987 «997 0.10 <832 1.188 © 0.0 6,368
0.8 ~993 1.000 971 «996 0.25 +685 w717 0485 2,547
0.3 »991 «098 2950 «992 0,80 «548 «428 . 0550 i 1.293
0.4 «988 «0898 +926 «985 1, «306 239 1, . «637
[+ )9 981 «998 +880 « 568 - 2. 254 +092 Be »318
0a8 « 7L +998 2853 «B38 By «120 +0R2 ‘Ba 127
0,7 <954 +883 o745 +856 - 10, «083 «008 10. «084
OIB .926 .960 -605 0701 .

0.9 877 +900 303 .

0.96 «838 D26 242 «227
ng - -'?'ll - -
0.99 - 08-55 - -
1.00 oT808 0 0 Q

Iabla 16.- con{;e.tiaon of values of j]Ecrx(x,o) apcordling to
Tabla 13, Stresses in Cover Shest of Box Beem With Cutout. . equations (71), (73), ana (&3).
18

x p=1 , B=0 \r“z("") Distributed load (4 = £3)

N ! X - = Ooncentrated

Y| oxlap ) | on (3w /o, | ax(xo¥a| ox(z) /a0 % iy =® K =By load

0 0 3] [¢] 0 0 le 1. 1.

0;1 «096 « 101 +100 «100 * 00015 + 954 1. « 968
0.2 «191 « 204 »199 «201 0,163 038 598 o022
0.5 «£281 « 308 » 298 «308 0.408 844 +976 «586
Ced +«3565 46 o304 «406 0.917 «708 «888 <548
Ceb o434 «B29 484 «516 1.633 « 500 »630 «308
0.6 «479 +8656 «568 544 3.286 «204 «360 « 284
C.7 <479 «B0S « 594 +818 8,185 «12B6 1656 - +120
0.8 «408 997 5 1.142 164330 +084 «078 <083
0,9 +342 1,292 o477 2,137

04,98 «127 1.53 «186 4,188

1.00 Q 2.000 0 -~

88 *qK 930K TesiuUnoel VOVH
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(a) Symmetrical axial loading. (b) Antisymmetrical axiasl loading.

Figure 1.~ Sketches of panels indicating the notation used. o

—) N — NN |
= \[ N % 2 \{ —\ I
[ = = = % = 7
(a) Completely clamped along (b) Cover sheets not attached
edge at x =1. to support.

Figure 2.- Sketches of cantilever box beams.

(a) (v)

Figure 3.- Sketches of half-sheets loaded by concentrated and distribu~
ted forces. =
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